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a b s t r a c t

That two or more phases of small clusters can coexist in thermodynamic equilibrium over ranges of
temperature and pressure has become well established. Moreover the explanation for this apparent vio-
lation of the Gibbs phase rule is also now well known. The origin of the phenomenon lies entirely with
the difference between systems of small numbers of component atoms or molecules and those made
of large numbers, e.g., tens, vs. 1020. However little has been said about the maximum sizes of clusters
vailable online 4 October 2008
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for which such coexistence may be expected to be observable. Here we show how one can estimate
that maximum size for observable coexisting phases, in which the unfavored minority phase constitutes a
detectable fraction of the total sample. In addition, the role of atom thermal motion in the phase transition
is analyzed.

© 2008 Elsevier B.V. All rights reserved.
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. Introduction

Since the mid-1970’s, evidence has grown, and with it, inter-
retation and explanation, of how and why small clusters of atoms
r molecules can exhibit bands of temperature and pressure (or of
ther pairs of thermodynamic variables) within which observable
uantities of different phases may coexist in equilibrium [1–3]; for
eviews, see [4,5]. This phenomenon is not restricted just to two
hases; with small systems, more than two phases may coexist in
quilibrium [6–8]. The explanation is quite simple: if one exam-
nes the equilibrium constant Keq for coexisting phases ˛ and ˇ of
cluster of n particles,

eq = exp
(

−n��

kT

)
,

here the change in chemical potential is �� = �˛ − �ˇ, then it
s easy to see that even if ��/kT is nonzero but very small, e.g.,
0−10, but n corresponds to a macroscopic sample, such as 1020,
hen the unfavored phase must be present in unobservably small

uantities. However if n is of order 100, then n��/kT can be small
nough, within a temperature region a little away from the point
here �� = 0, that observable amounts of the unfavored phase
ay easily exist. If, for example, ��/kT = ±0.1 (then n�/kT is 20),

∗ Corresponding author. Tel.: +1 773 702 7021.
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nd (i), the unfavored phase comprises about 13% of the total sam-
le. The balance between the mean energy change per particle,
ε, and the mean contribution to the entropy per particle, T�s,

re of course what determine the value of ��. Here we address
he question of how large a cluster may be and exhibit observable
mounts of two or more phases. The central point of this work is
etermining the size dependence of �� and then relating that to
he sensitivity of experiments. In this analysis we will be guided by
lusters with completed atom shells, specifically those of 13 and 55
toms. These cases most clearly exhibit the role of surface melting.
or other cluster sizes additional mechanisms of melting may need
o be invoked to obtain more precise estimates that we establish
ere.

The most straightforward way to approach this question is to
xamine Keq, and more specifically the terms ��/kT in the expo-
ent, to determine the range in which the magnitude of the full
xponent, |n��/kT |, is smaller than about 4. This corresponds to a
inority concentration of about 2%, which we assume is about as

mall a percentage as one could detect. We must therefore estimate
he energy and entropy changes for phase changes of clusters in the
emperature ranges in which phase coexistence is possible. We shall
o this by using as an illustrative system clusters of argon, modelled

y a Lennard–Jones potential. Our target is an order-of-magnitude
stimate as a guide for experimental design, not a precise com-
utation. We intend this result to be a guide and stimulus for new
xperiments, and the most likely and most appropriate are probably
oing to involve some form of mass spectrometry.

http://www.sciencedirect.com/science/journal/13873806
http://www.elsevier.com/locate/ijms
mailto:berry@uchicago.edu
dx.doi.org/10.1016/j.ijms.2008.09.012
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. Evaluating the free energy difference: “surface melting”

Before we address the observable coexistence range for true
elting of clusters, let us examine the process called “surface melt-

ng,” which is really a combination of promotion of a few atoms
rom the surface layer to become “floaters” attached to the clus-
er but free to move on the otherwise empty shell outside of the
luster, while the remaining outer-shell atoms are simply vibrating
ore loosely [6–8]. This phenomenon seems to occur in clusters of

bout 45 atoms or more. By choosing argon clusters as our illus-
rative model, we fix the relevant range of T as that around about
5 K. The coexistence ranges for argon clusters are around this
alue. The energy contribution to the change of chemical poten-
ial is determined primarily by the change in the mean number of
earest-neighbor contacts. This is easy to estimate in terms of the
hange in the number of pair dissociations, whose energies D we
an estimate as those of simple diatomic pairs, D0, whose value we
ake as 12.3 meV or 143 K for argon. Estimating the entropy change
s a little more subtle. We break that change into two parts, one
ssociated with the change in configuration or available volume
or whatever relocation of atoms takes place in the transition, and
he other, associated with the change in the vibrational contribu-
ion to the entropy, which can be expressed in terms of the change
n the anharmonicity of the vibrational motion.

For a specific, simple example, we review the Ar13 cluster, which
e used in a recent analysis of how to evaluate the entropy change

f the phase transition in clusters. In that system, the phase change
s simply due to promotion of one atom from the icosahedral shell
f 12 atoms to a site on the surface. The energy change from the low-
emperature phase to that at higher temperatures is that of the loss
f three of the nearest-neighbor contacts, because the promoted
tom moves from having six contacts in its surface site to a site
sitting on top” where it contacts only three neighbors. This is just
D. The configurational part of the entropy change is simply that
ssociated with the promotion of any of the 12 surface atoms from
single location to any of the 15 sites that do not border the hole

eft by the promotion. Hence the configurational contribution to
he entropy change (in dimensionless units) is ln(15 × 12) ≈ 5. The
ne remaining contribution is the entropy bit due to the change in
nharmonic vibrations.

Now let us generalize the calculation of the configurational
ntropy change. Simulation studies have shown that in the first
tage of melting of multilayer clusters, roughly one particle in about
5 moves out of the outermost shell and becomes a “floater”, mov-
ng essentially freely on the surface of the cluster. Hence each of
hese moves from a volume V0 corresponding to its own site in
he solid to a volume equal to that of the next larger shell. Sup-
ose that the radius of the unexcited cluster is R0, and the radius
f the individual (presumably atomic) particles is r and the inter-
uclear distance is d. We make the distinction between 2r and d in
rder to allow for vibrational motion to expand the cluster. Then
he volume of the shell in which the promoted particles move is
�/3[(R0 + 2r)3 − R3

0]. The initial volume available to each atom is

0 = 4�/3(d/2)3. If there are ns particles in the completed filled
hell, then we can assume that ns/15 of them are promoted when
surface melting” occurs. The total increased available volume for
he cluster as a whole is therefore

Vsm,cs = ns

15
4�

3

[
(R0 + 2r)3 − R3

0 −
(

ns

15
− 1

)
r3

]

herefore the configurational entropy change for surface melting
f a closed-shell or “magic number” cluster is

Ssm,cs = ln
(

�Vsm,cs

v0

)
(2.1)

l
m
c
t
n
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or clusters with partly filled outer shells, we should do a somewhat
ore elaborate but equally elementary estimate: when surface
elting occurs in a cluster with a shell roughly only 2/3 filled or

ess, we can assume that the surface melting allows all the surface-
ayer atoms to move freely on that original surface, but we must of
ourse take into account the volume excluded by the presence of
he other particles in the shell. In other words the newly available
olume is the fraction of the original shell that had unoccupied sites.
or clusters with more than about 2/3 of the surface sites filled, we
an assume that the volume available on surface melting is that of
he full-shell case, plus the volume of any additional empty sites in
he initial, solid-like state.

The energy change for surface melting of a closed-shell cluster
sm,cs is easy to approximate as the number of promoted particles,
imes the change of the number of closest contacts, in units of the
inding energy per pair, D:

Esm,cs = 3
ns

15
(2.2)

or an icosahedral closed shell, since the number of contacts drops
rom 6 to 3.

We have yet to estimate the contribution to the entropy from the
ibrational motion. We make the assumption that the vibrational
ntropy change upon “surface melting” is approximately the same,
er unpromoted atom, as that found for the 13-atom cluster. That
ibrational entropy is a very linear function of the temperature,
pproximately �S13 = 25T + 1.5, or, in terms of remaining surface
toms, the vibrational entropy per remaining unpromoted is atom
s13 = 2.2T + 0.13. Note that a more accurate representation of the

emperature dependence of the entropy jump for a 13-atom cluster
n the coexistence range is very steep and sharp, closer to a stepwise
unction than to the linear dependence that we use here. Neverthe-
ess, the linear dependence is a simple and rough approximation
dequate for this estimation purpose. We shall make the assump-
ion now that the vibrational entropy change of any closed-shell
luster, in the surface-melting process, is given by this expression,
o that 14/15 of the atoms in the outer shell undergo this entropy
hange while the other 1/15 of the outer-shell atoms go free to
oam on the surface as floaters. Hence the free energy change of
he closed-shell cluster on “surface melting” is

Fsm,cs = �Esm,cs − T�Ssm,cs = D
ns

5
− T

D
ln

(
�Vsm,cs

v0

)

−14
15

ns(2.2T + 0.13). (2.3)

For open-shell clusters, we can estimate the average number of
ontacts of the surface-melted state for systems with 2/3 or less of
he outer shell filled just by assuming that, in the surface-melted
tate, each atom has three contacts with the lower layer and what-
ver fraction of contacts in the surface layer were occupied in the
olid form, e.g., 2/3 of 5, for the cluster with 2/3 of the surface sites
ccupied. Thus for such a case, if fs is the fraction of the surface-
ayer sites that are occupied, then �Esm,f = 3 + fsns, again in units
f the binding energy D.

The entropy of surface melting for an open-shell cluster con-
ains a vibrational contribution that we have still to estimate. For
lusters with no more than 2/3 of the surface sites occupied, we
ave assumed that all the surface atoms are set free as floaters in
heir own original layer in surface melting. Hence it is the next

ayer below these that can gain larger amplitude, more anharmonic

otion by the surface melting process, and therefore the vibrational
ontribution to the surface-melting entropy change for such a clus-
er should be simply the number of atoms in the next-inner shell,
o-1, times that expression for the vibrational entropy increase per
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tom, 2.2T + 0.13. For clusters with more than 2/3 of the outer shell
lled but still with some empty sites, we can suppose that the pro-
otion of atoms to be floaters is the appropriate description, and
e can use the same model as for closed-shell clusters.

. Evaluating the free energy difference: true melting

As the appropriate illustrative model for constructing the meth-
ds for estimating energy and entropy changes on melting of
lusters, we take the 55-atom argon cluster. This has been ana-
yzed from computer simulation results and from the viewpoint
f melting as the introduction of voids into the system [9–11,13].
he energy change on melting of this system is 15 ± 1 in units of
he Ar–Ar bond dissociation energy D. This emerges very straight-
orwardly from the computer simulations of isothermal conditions
ith both phases present [7,8].

Estimating the entropy change from simulations can be done,
ut the uncertainties are large and the alternative, using a void-
ormation model, yields a very similar value with a much smaller
ncertainty. The void calculation is based on finding that the most
robable number of atoms to be promoted from the initial sites in
he 55-atom icosahedron is about 5–7. The vacancies left by these
romotions then relax to undetermined and changeable shapes, the
oids. We find the entropy of the phase change in two steps. First,
e can estimate what that entropy change would be if 5–7 voids
ere to form at 0 K, and then we can add the contribution from

he nonzero temperature. The first of these, S0, can be estimated
rom simulations showing the maximum in the heat capacity or
rom simple numerics also addressing the heat capacity. From the
imulations, we can infer that the entropy at the melting point,
Sm, is

Sm = �Em

Tm
= 48 ± 5

here we use the peak in the heat capacity to be approximately
aussian, that gives [9–11]

S0 = 2�Sm − 4
Cmax

�Sm
(3.1)

his yields

S0 = 36 ± 15,

rather uncertain quantity. The uncertainty results from the dif-
erent methods used in different simulations. Numerical estimates
rom models do better in the sense of having lower uncertainties.
here are 42 atoms in the outer shell of the cluster, and 80 surface
ites to which a promoted atom can move. A vacancy on the sur-
ace has l nearest-neighbor atoms, where l = 6 for a vacancy on an
dge or a surface, and l = 5 for a vertex vacancy. Hence promotion
f v atoms to the surface, leaving l vacancies, v · l bonds are lost in
he process. We then estimate the configurational entropy change
t 0 K from the configurational heat capacity contributions of the
romoted atoms and the remaining shell:

S0 = ln Cv
mCv

42,

here m = 80 − v · l, the number of positions available for promo-
ion on the cluster’s surface. From this expression, we find that if
is 5, �S0 = 28.5 ± 0.3; if v is 6, then �S0 = 31.6 ± 0.4, and if v

s 7, �S0 = 32.3 ± 0.7. These numbers are similar enough that we
an simply take �S0 = 31 ± 2. This is significantly less uncertain

han the value from simulations, but is entirely consistent with it.
ow we find the entropy change at the point of equal free ener-
ies of solid and liquid. Then we use formula (3.1), that connects
hat connects the entropy jumps at zero temperature �S0 and at
he melting point �Sm, and also the maximum value Cmax of the

w
s
n
f
n
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eat capacity that is taken on the basis of a sum of the results of
omputer simulation [14], which is Cmax = 650 ± 50. We find from
hese that the entropy change at melting is �Sm = 45 ± 2.

With these two numbers for our representative system, �Em =
5 ± 1 and �Sm = 45 ± 2, we can begin to estimate the range of
bservability of coexisting solid and liquid phases. The dissociation
nergy of the argon dimer, D, is 143 K or 12.3 meV. The melt-
ng point, i.e., the maximum of the heat capacity and presumably
he point at which �Em = T�Sm, is, according to the simulations,
pproximately 0.31 in units of D, i.e., ≈ 44 K. This is not precisely the
alue we estimate for �Em/�Sm, of 1/3, corresponding to ≈ 47 K,
ut is certainly close. Note that although we use interaction param-
ters corresponding to argon clusters, because of the similarities of
he rare gases, our general conclusions are valid for the other inert
as clusters as well, apart from helium. Even neon, in the range of its
olid–liquid transition, is moderately well described by a classical
odel of the kind used here [12].
Now we can estimate the range of temperature over which the

olid and liquid phases might both be observable. We consider just
he case of isothermal conditions. Let us take as the upper and lower
alues of the equilibrium constant to be 100 and 0.01, certainly
omewhat optimistic, between which both phases could perhaps
e detected. Then

.01 < Keq ≡ exp(−F) < 100

ith F in units of kT. Alternatively,

4.6 < −F < 4.6

ence T must lie between 0.4 and 0.6 in units of D, or between
3 and 57 K for the two phases to be observable. If we re-set the
riterion at 10% of the minority phase, or

.1 < Keq ≡ exp(−F) < 10,

hen the temperature range is between 40 and 54 K, still a wide
nough range to span easily in experiments.

We can construct a convenient, general estimate of the range
f temperatures in which two phases may be observable. The free
nergy change in the passage between phases is

F = �E

T
− �S,

hich is of course zero at Tm so that there, �E/T = �S. Let us define

F = �EıT

T2
,

here ıT now allows us to define the observability range. Since
E/Tm = �S at Tm, and the observability range is relatively nar-

ow, we can assume, for purposes of our estimation, that �E and
S are approximately constant in this range. With ıF ≈ 4.6 in the

oexistence range, we may thus write the approximate expression
or the observable temperature range of coexistence in terms of just
he one parameter �S and the melting temperature:

ıT

Tm
≈ 5

�Sm
,

Next, we make a leaping assumption, that we can write the free
nergy of clusters in this size range and up to the limit we seek by
sing the same value of the chemical potential, the free energy per
article, that we obtain for the 55-atom cluster. That is, we suppose

e can write ln Keq for a cluster of n atoms as exp(−n��) with the

ame values of energy and entropy per atom that we use for Ar55,
amely 15/55 or 0.27 for the energy per particle, and 45/55 or 0.82

or the entropy change per particle. With this assumption, we can
ow make a quick estimate that for a cluster of 100 particles, the
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ange within which the minority phase is present in a ratio of 1:10
s only 0.1 K. For a 100-particle cluster with an allowance of a ratio
f 1:100, the range only extends to that between 46.9 and 47.3. With
5 particles, the range for an allowable ratio of 1:10 is almost 4 K,
rom about 45 to 49 K, clearly an observable range. In short, while
e could refine the means of estimating the terms of the chemical
otential for clusters of sizes larger than 55 atoms, we can be fairly
onfident that the largest clusters for which coexisting solid and
iquid phases are likely to be observable is in the range of about 75
toms.

. A model of aggregate states

Our analysis aims to give some position in the character of
luster phase transitions, not to obtain some numerical values.
herefore we now glance on this problem from another standpoint
hat allows us to see some advantages and weak points of sim-
le models under consideration. Of course, the main advantage of
imple models is the clearness that allows us to understand the
eculiarities of the object or process by simple means. But simple
odels relate usually to specific conditions, and to understand this

n the considering case, we use another approach. Let us represent
he entropy of a configurational state, as well the entropy jump at
he phase transition between two aggregate states, as a sum of the
onfiguration and thermal parts

= Scon + Sth (4.1)

he configurational entropy part is Scon = ln g, where g is the num-
er of different atomic configurations for this state. For example,
or a 13-atom cluster with icosahedral structure, g = 1 for the solid
tate because of the completed surface shell. If the lowest excited
ggregate state corresponds to transition of one atom onto the
luster surface, we have g = 12 × 15, where the first value is the
umber of possible positions of a vacancy in the cluster shell, and
he second value is the number of atomic positions on the clus-
er surface where a promoted atom has three nearest neighbors.
orrespondingly, Scon ≈ 5 in this case. Note that this consideration
olds true for dielectric clusters as well as for inert gas clusters,
oth being excited aggregate states that may be described in terms
f perturbed vacancies.

Another part of the entropy relates to thermal motion of atoms.
onsidering atoms to be classical, let us draw a region in a space
here a probe atom may be located. Of course, the boundary of

his region depends on coordinates of neighboring atoms and the
urrent energy of a test atom. For simplicity, one can fix positions
f neighboring atoms and take the average kinetic energy of a test
tom to be 3kT/2, where T is the cluster temperature. In particu-
ar, we have for the thermal part of the entropy if thermal atomic

otion is vibrational [15]

th = 3(n − 2) ln

[
T exp(4/3)

�D

]
, (4.2)

here �D is the average Debye temperature, and the assumption
D � T is used [15]. Of course, the Debye model is strictly valid for
acroscopic systems, but this approximation allows us to get a bit

f insight into properties of finite atomic systems and how they
elate to bulk properties. We include in the thermal entropy of an
ggregate cluster state only vibrational degrees of freedom. This
ormula holds true more or less for the solid aggregate state. In this

ase the region of location of a test atom is close to an ellipsoid,
nd a temperature increase leads to an increase of size of this ellip-
oid. In other words, energetic barriers on the cluster’s potential
nergy surface are high compared to the atomic thermal energy on
he boundary of the region of atomic location. However the barri-

l
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rs for passage from one local minimum to another are obviously
ow enough to allow liquid-like behavior on the time scales of the
ppropriate observations, for systems in the liquid state.

One can see that if this formula is suitable both for the solid
nd liquid states, the contribution to the entropy jump at melting
ill be small. Therefore, a notable contribution to the entropy jump

esults from the situation in which high barriers separating regions
f atomic location are opened. In particular, for clusters with com-
leted atomic shells, this occurs when atoms initially locked in
ells surrounded by other surface atoms are promoted to become
oaters that may move relatively freely over the cluster surface.

Note that the conceptual models invoked here are based on
ingle-atom and pairwise interaction behavior and can give only
imited insight into the phase transitions in clusters. These mod-
ls do not incorporate simultaneous interactions of many atoms
nd that are not described by one-atom models. On the other hand,
omputer simulation by molecular dynamics is suitable for a more
etailed, quantitative analysis. Therefore, our experience in this
rocess is much influenced by our familiarity with the results of
omputer simulations. Based on this, we simplified the descrip-
ion by taking the contributions of the configurational and thermal
xcitation to the entropy jump at the melting point to be identical.
his is satisfied with an accuracy of approximately 10 % for 13-atom
nd 55-atom Lennard–Jones clusters, and also for bulk inert gases
9–11]. For example, for the 13-atom Lennard–Jones cluster with
ne floater we obtain on the basis of this model for the entropy
ump at the melting point �S ≈ 2So ≈ 10, while a more accurate
alue is 9.4 [9–11]. Thus, such a model is suitable for the rough
stimate needed here of the entropy jump at melting, for a given
umber of floaters.

We also point out that we assumed an excited aggregate state
ccurs as a result of formation of perturbed vacancies in a cluster
s a result of transitions of atoms onto the cluster surface, where
hey become floaters. Hence any specific excited aggregate state
orresponds to a restricted number of atomic configurations. There-
ore, the models under consideration are suitable for Lennard–Jones
nd some dielectric clusters, but are not generally valid for metal
lusters, particularly those that admit a high number of excited
quilibrium atomic configurations. This estimation can be used for
ielectric clusters to the extent that the assumptions, e.g., of slowly
arying energies and entropies of the phase change in the coexis-
ence range, are valid.

. Conclusion

The above analysis exhibits that, although we apply thermo-
ynamic parameters for clusters, notably T, S, E and F, the phase
ransition between two aggregate states proceeds not by a jump,
s it takes in bulk thermodynamic systems; rather, coexistence of
wo phases in thermodynamic equilibrium occurs over some range
f temperature and pressure (or other parameters that are respon-
ible for the phase change). This is explained by a small number of
toms; roughly, the coexistence range is narrower, the larger the
luster. Next, the entropy jump at the melting point is the sum of
he configurational and thermal contributions, in accordance with
ormula (4.1). In the case of inert gas clusters of different sizes,
he contributions of these parts are comparable in the vicinity of
he melting point. The first part, determined by atomic configura-
ions, is very nearly independent of the temperature. The second
art occurs because the upper aggregate state is looser than the
ower one. The thermal part of the entropy jump is zero at zero
emperature and grows not smoothly, but practically by jumps,
hen barriers in motion of transferred atoms – floaters or inter-
al atoms – can be overcome. Nevertheless, for simple estimations
ver narrow temperature ranges, we use a monotonic temperature
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ependence for the entropy jump based on the results of cluster
omputer simulations. Thus, the conclusion from this analysis, that
lthough the phase transition results from configurational excita-
ion of an atomic system, thermal motion of atoms in the aggregate
tates of transition is nevertheless important for the numerical
arameters of the phase transition.

The above analysis was done with the parameters for argon.
hat about other substances? The crucial term determining the

emperature range in which the two phases are observable is the
atio of the log of the chosen concentration ratio to the entropy
hange of the transition. The smaller is that entropy change, the
arger is the range of observability. Of course the smaller the entropy
hange, the higher the melting point must be, for a given energy
hange in the transition. This underlies the observations of coex-
stence of clusters of well over 100 sodium atoms; the melting of
odium clusters of order 138 atoms shows a clearly distinguishable
oexistence band [16,17].
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